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ate areas. Metabolomics can move glaucoma care towards a 
personalized approach and provide new knowledge con-
cerning the pathophysiology of glaucoma, which can lead to 
new therapeutic options.  © 2017 S. Karger AG, Basel 

 Metabolomics 

 Metabolomics is the scientific study of the metabolic 
fingerprints that all cellular processes leave behind in a 
biological sample  [1] . It provides a global perspective of 
all biochemical processes occurring in an organism at a 
certain time. Conversely, metabonomics, as it was first 
named by Jeremy Nicholson, refers to “the quantitative 
measurement of the dynamic multiparametric metabolic 
response of living systems to pathophysiological stimuli 
or genetic modification”  [2, 3] . Metabolomics is the most 
recent of the “omics” fields, and it differs from other 
omics technologies because it considers the dynamic sta-
tus of the human body. However, the concept behind the 
field can be traced back to the beginning of the last cen-
tury, when physicians already understood the value of 
metabolites in the study of diseases  [4] . The amount of 
knowledge gathered is rapidly growing, and in recent 
years the research subject has begun to change from in 
vitro and animal models to in vivo and human samples, 
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 Abstract 

 Glaucoma is one of the leading causes of irreversible blind-
ness worldwide. However, there are no biomarkers that ac-
curately help clinicians perform an early diagnosis or detect 
patients with a high risk of progression. Metabolomics is the 
study of all metabolites in an organism, and it has the poten-
tial to provide a biomarker. This review summarizes the find-
ings of metabolomics in glaucoma patients and explains 
why this field is promising for new research. We identified 
published studies that focused on metabolomics and oph-
thalmology. After providing an overview of metabolomics in 
ophthalmology, we focused on human glaucoma studies. 
Five studies have been conducted in glaucoma patients and 
all compared patients to healthy controls. Using mass spec-
trometry, significant differences were found in blood plasma 
in the metabolic pathways that involve palmitoylcarnitine, 
sphingolipids, vitamin D-related compounds, and steroid 
precursors. For nuclear magnetic resonance spectroscopy, a 
high glutamine-glutamate/creatine ratio was found in the 
vitreous and lateral geniculate body; no differences were de-
tected in the optic radiations, and a lower N-acetylaspartate/
choline ratio was observed in the geniculocalcarine and stri-
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which brings this technology closer to the patients’ “bed-
sides” and enhances its clinical relevance. This research 
field can provide biomarkers and lead to a better under-
standing of the pathophysiologies underlying several dis-
eases. The identified metabolites and metabolic pathways 
are closer to the phenotype than many other omics tech-
nologies; therefore, they are more easily translatable to 
clinical practice  [5] . The metabolome is the sum of all 
metabolites in an organism, the result of internal process-
es (gene expression, protein activity, and cell metabolism) 
and the interaction between an organism and “external” 
factors (e.g., diet, health status, lifestyle, gut microbiome, 
drugs)  [6, 7] . Metabolomics can be studied in organisms/
whole organs, tissues, and fluids, in vitro and in vivo, ei-
ther directly at eye level or systemically. The 2 main tech-
nologies currently used for these studies are mass spec-
trometry, which is more sensitive and can cover a wider 
range of metabolites but destroys the analyzed sample, 
and nuclear magnetic resonance (NMR) spectroscopy, 
which primarily detects soluble metabolites, does not de-
stroy the sample, and can analyze in vivo samples nonin-
vasively and repeatedly over time  [8, 9] . Both technolo-
gies can simultaneously quantify a large number (hun-
dreds to thousands) of metabolites, in a nontargeted 
approach, which has been defined as metabolic pheno-
typing or “metabotyping”  [7] .

  Metabolomics in Ophthalmology 

 In ophthalmology, metabolomics has been used to 
study various eye diseases including glaucoma  [10–16] , 
age-related macular degeneration  [17–19] , diabetic reti-
nopathy  [20–22] , keratoconus  [23] , refractive error  [24, 
25] , retinal detachment  [26] , uveitis  [27, 28] , dry eye  [29, 
30] , and other ocular surface diseases  [31] . Analyses have 
been performed on tear fluid  [23, 29–32] , aqueous humor 
 [24, 25, 33, 34] , vitreous humor  [20, 26, 27, 35, 36] , cornea 
 [37–39] , conjunctiva  [40] , and lens  [41, 42]  samples.

  This review aims to explain the importance of metabo-
lomics in glaucoma and to summarize the findings of hu-
man studies.

  Metabolomics in Glaucoma  

 Glaucoma is one of the leading causes of irreversible 
blindness worldwide  [43] , and the number of patients is 
expected to increase due to the aging population  [44] . 
However, fast and reliable diagnostic methods are lack-

ing. Indeed, clinicians rely substantially on regular struc-
tural and functional examinations until irreversible dam-
age is detected. Moreover, substantial heterogeneity ex-
ists among patients. The incidence differs considerably 
between races, and the clinical manifestation and pro-
gression profiles are variable  [11] . Genetic mutations and 
common genetic variants have been linked to several 
types of glaucoma, but these factors can only explain a 
small portion of all cases  [45] .

  After establishing the diagnosis, clinicians face consid-
erable uncertainty during the follow-up. The individual 
rate of progression varies considerably between patients, 
and it is impossible to know which patients will progress 
faster; therefore, intensive follow-up is advised (accord-
ing to glaucoma management guidelines) until the rate is 
known  [46–50] . To avoid an unacceptable burden on fu-
ture health resources, it is important to better stratify pa-
tients according to their risk profiles. This process would 
allow more resources to be allocated to patients who are 
at higher risk of blindness (and avoid wasting resources 
on patients who do not need them)  [51, 52] . Metabolo-
mics has the potential to identify biomarkers that can be 
used for glaucoma diagnosis and prognosis. These results 
would allow for earlier diagnoses, when more visual func-
tion can be spared and less money spent on surgeries and 
frequent consultations, and, concurrently, help to better 
allocate the finite resources we have for high-risk pa-
tients.

  The correlation between metabolomics and disease 
progression has not been studied, thus far, for any oph-
thalmological disease. However, a correlation with dis-
ease stage has been shown for diabetic retinopathy  [21] , 
as well as age-related macular degeneration  [18, 19] . Sim-
ilar studies have been conducted in cancer research, one 
of the largest areas of metabolomics research; preserved 
blood and urine samples have been used to metabotype 
progressive and/or relapsing patients. Some of these stud-
ies have focused on blood samples collected longitudi-
nally to obtain data from different disease statuses for 
each patient  [53] . However, glaucoma is a progressive 
chronic disease that does not have acute stages or recur-
rence/remission, and perhaps the best approach to un-
derstand what drives its progression is to collect either 
samples from patients with different rates of progression 
(case-control) or samples from a cohort and later analyze 
them according to progression outcomes (cohort) in-
stead of longitudinal series of samples. A recent example 
of this one-time sample collection approach is a study of 
chronic lymphocytic leukemia patients (case-control) in 
which the authors sought to identify prognostic markers 
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of clinical aggressiveness at the time of diagnosis, which 
would direct treatment needs because current disease 
staging systems (Rai and Binet) are unable to discrimi-
nate between the stable and progressive forms of the dis-
ease in the early stages  [54] . The Framingham Heart 
Study is an example of a metabolomics cohort study, in 
which baseline samples were used to predict clinical out-
comes (diabetes incidence over a 12-year period  [55] , as 
well as the risk of metabolic syndrome after 5–7 years of 
follow-up  [56] ).

  Apart from enabling the detection of different pro-
gression statuses, further knowledge regarding the patho-
physiology of glaucoma can potentially create new drug 
development research lines, thereby expanding the po-
tential therapeutic targets that we currently have avail-
able. Today, the mainstay of treatment relies on lowering 
intraocular pressure, either with medical or with surgical 
treatment. Although intraocular pressure is the primary 
risk factor, some patients present with glaucomatous 
neuropathy and progress towards blindness with lower-
than-normal intraocular pressure values. Thus, we can 
conclude that other mechanisms exist for retinal ganglion 
cell death. A reduction or dysregulation of blood supply 
to the optic nerve is one potential mechanism in which 
local and/or systemic conditions, such as systemic hypo-
tension  [57–59] , would favor an ischemic insult of the 
optic nerve  [60] . Other potential damage pathways are 
increased apoptosis (increased neurotoxicity, neuro-
trophin depletion) and oxidative stress, among others. 

Several oxidative stress markers have already been shown 
to exist in the blood and aqueous humor of glaucoma pa-
tients (malonyldialdehyde was found to be the best serum 
biomarker) compared to controls  [61–64] . Hence, we can 
conclude that glaucoma is a multifactorial disease.

  In addition to local factors, systemic conditions have 
been shown to influence glaucoma pathogenesis. There-
fore, metabolomics of ocular and systemic samples will 
potentially contribute to a better understanding and ear-
ly diagnosis of glaucoma (Table 1). Indeed, a blood-plas-
ma comparison between primary open-angle glaucoma 
patients and healthy controls using mass spectrometry 
found significant differences in specific metabolic pro-
cesses involving palmitoylcarnitine, sphingolipids, vita-
min D-related compounds, and steroid precursors. These 
observations might be linked to mitochondrial dysfunc-
tion and energy metabolism changes  [11] . This study was 
the first attempt to perform a metabolome-wide analysis 
of glaucoma patients. Future studies can focus on certain 
glaucoma endotypes and investigate other sample types, 
such as aqueous humor or vitreous. In addition, exclud-
ing prevalent systemic diseases that can considerably alter 
metabolism, such as diabetes, might allow for a more ac-
curate identification of glaucoma biomarkers.

  In terms of NMR spectroscopy, several in vivo studies 
have been performed to assess the brain metabolite 
changes in glaucoma patients. Using localized, single-
voxel in vivo NMR spectroscopy, no significant changes 
were found in the concentrations of typical metabolites 
N-acetylaspartate (NAA), creatine/phosphocreatine 
(Cr), and choline/phosphocholine/glycerophosphocho-
line (Cho) in the striate area compared to healthy controls 
 [13] . However, the authors explained that this result 
might have been due to the slowly progressive nature of 
the disease because a substantial proportion of the de-
crease in the neuronal marker NAA occurs in the acute 
phase of cell degeneration. Another possible explanation 
is that the affected region might have been too small to 
allow for proper measurement, requiring more advanced 
NMR spectroscopic approaches. Later, a study performed 
with multiple-voxel NMR spectroscopy found lower 
NAA/Cr and Cho/Cr ratios in the geniculocalcarine and 
striate areas of glaucoma patients when comparing them 
to age- and gender-matched healthy controls  [14] . A sim-
ilar study was conducted in a rat model of ocular hyper-
tension, and a lower Cho/Cr ratio was also found in the 
visual cortex 6 weeks after the start of ocular hyperten-
sion. However, no significant differences were found in 
other metabolites, including NAA, glutamine, and gluta-
mate  [15] . These changes could point towards a patho-

 Table 1.  Metabolomics in glaucoma patients

Sample type Altered metabolites/metabolic pathways

Mass spectrometry
Blood plasma Metabolic pathways involve 

palmitoylcarnitine, sphingolipids, vitamin 
D-related compounds, and steroid 
precursors [11]

NMR spectroscopy
Vitreous Higher Glx/Cr ratio [10]
LGB Higher Glx/Cr ratio [10]
Optic radiation No differences [16]
Striate area/

occipital cortex
Lower NAA/Cr and Cho/Cr ratios [14]
No differences [13]

 All studies compared glaucoma patients to healthy controls. 
NMR, nuclear magnetic resonance; LGB, lateral geniculate body; 
Glx, glutamine and glutamate; Cr, creatine/phosphocreatine; 
NAA, N-acetylaspartate; Cho, choline/phosphocholine/glycero-
phosphocholine.
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physiological mechanism of glaucoma involving a dys-
function of the cholinergic system. Hence, the Cho/Cr 
ratio could potentially serve as a noninvasive biomarker.

  The vitreous has also been studied in human patients. 
In view of the apoptosis theory, in which the neurotoxic-
ity of glutamate plays a pivotal role, a study was conduct-
ed with in vivo single-voxel NMR spectroscopy of the vit-
reous and lateral geniculate body of glaucoma patients. 
The authors found a higher glutamine-glutamate/Cr ra-
tio in the vitreous and in the lateral geniculate body com-
pared to healthy controls  [10] . All of the study subjects 
were Caucasian, and hypertension, diabetes, and degen-
erative central nervous system diseases were excluded. 
No significant changes were found in the NAA/Cr and 
Cho/Cr ratios in the lateral geniculate body. These find-
ings support the apoptosis theory, in which glutamate is 
one of the main contributing factors to neurotoxicity. 
Similar changes have been found when using high-pres-
sure liquid chromatography to analyze vitreous samples 
of glaucoma patients  [65] . Another study with the same 
technique showed no changes in glutamate in vitreous 
samples from glaucoma patients  [66] . However, this re-
sult might have been due to the small sample size (8 glau-
coma patients) and the heterogeneous sample (Axenfeld-
Rieger and uveitis were also included) in the latter. 

  Recently, the metabolic pattern of optic radiations was 
compared between glaucoma patients and healthy con-
trols, using a single-voxel NMR spectroscopy approach. 
The authors investigated the metabolite changes accord-
ing to disease severity. No significant differences were 
found between groups or between disease severity levels. 
This result might have been due to a different site chosen 
for the measurement, a different (single- vs. multiple-
voxel) technique applied, and/or significant age differ-
ences between the groups  [16] .

  Pitfalls of Metabolomic Studies 

 In metabolomic studies, it is important to prevent and 
correct for sources of bias, such as age and gender, diet 
and lifestyle, the time of day of sample collection, and 
temperature and time to storage. In addition, systemic 
diseases and intake of drugs and supplements can poten-
tially alter the metabolome and should be accounted for. 
Despite this, some studies have already been conducted 
with previously preserved samples (5–9 years) collected 
and handled under suboptimal conditions. For instance, 
one study investigated blood and urine metabolic differ-
ences in patients with multiple myeloma. Samples were 

collected at different times of the day, with no fasting, and 
they were delivered by post, thus spending 1–3 days at 
ambient temperature. Even under such conditions, sig-
nificant differences were found between newly diagnosed 
myeloma requiring therapy, remission after treatment, 
and relapse patient groups. Bias sources were clearly pres-
ent, and the findings should be viewed under that consid-
eration, but the findings still support researchers who ar-
gue that standardization of procedures is more important 
than the best collection and handling conditions  [67] .

  Data analysis and statistics are also important. Al-
though the number of metabolomics libraries and the 
amount of knowledge increase every day, there are still 
several peaks in spectra that cannot be linked to known 
metabolites or metabolic pathways. In addition, there are 
many detectable metabolites; therefore, a proper statisti-
cal analysis must be performed to account for multiple 
comparisons and a high level of false positives (e.g., Ben-
jamini-Hochberg false discovery rate-controlling proce-
dure)  [2, 5, 6, 68–72] . Due to the large number of detect-
able metabolites, in particular in the spectra of ex vivo 
tissue and biofluid samples, quantification of individual 
metabolites is often not feasible. Therefore, automated 
analyses that do not require the assignment of spectral 
peaks to particular compounds are used  [73] . Although 
they are of high diagnostic value, these methods make it 
harder to link the acquired data to the underlying meta-
bolic pathways  [74] .

  Conclusion 

 Glaucoma remains a poorly understood disease, with 
a small range of therapeutic options. Metabolomics has 
the potential to provide biomarkers that can be used as an 
add-on to the currently available diagnostic, classifica-
tion, and progression detection tools. Furthermore, this 
technology can provide further knowledge regarding the 
pathophysiology behind this disease, which could lead to 
new drug development research lines. The future of med-
icine is moving towards a personalized approach, and 
metabolomics will be an important tool in patient profil-
ing and precision medicine.
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